
Principles of Basal-Bolus Insulin Therapy and Carbohydrate Counting

Henry K. Driscoll, MD, FACP

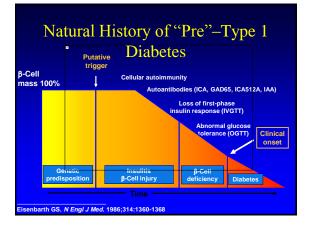
Huntington VA Medical Center Bruce S. Chertow Diabetes Center Marshall University Joan C. Edwards School of Medicine

Disclosures

• I do not have any relevant financial relationships with any commercial interests.

Types of Diabetes Mellitus

- The classification of diabetes includes four clinical classes:
 - Type I diabetes
 - Type 2 diabetes
 - Other specific types of diabetes due to other causes, eg., genetic defects in β-cell function
 - Gestational diabetes mellitus (GDM)


Diagnosis of Diabetes Mellitus

Criteria for Diagnosis

- Symptoms of diabetes and a casual plasma glucose ≥ 200 mg/dl (11.1 mmol/l) (classic symptoms of diabetes include polyuria, polydipsia, and unexplained weight loss) or
- FPG ≥ 126 mg/dl (7.0 mmol/l) (fasting is defined as no caloric intake for at least 8h) or
- 2-h plasma glucose ≥ 200 mg/dl (11.1 mmol/l) during OGTT (75-g glucose load)

Type 1 Diabetes Mellitus

• Absolute deficiency of insulin usually due to autoimmune destruction of the insulinproducing beta cells in the pancreas

Type 2 Diabetes Mellitus

- A disease characterized by a relative deficiency of insulin production relative to need and by a relative resistance to the action of insulin
- Both genetic and environmental factors contribute to development of this disease

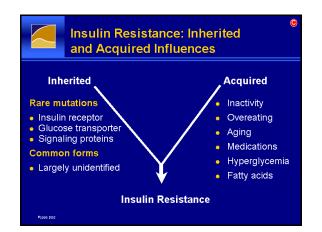
Risk Factors - Type 2 Diabetes

- Age > 45 years
- Overweight (BMI > 25 kg/m^2)
- Family history of diabetes
- Habitual physical inactivity
- Certain ethnic groups (African Americans, Latinos, Native Americans, Pacific Islanders)
- · Previously identified IFG or IGT
- History of GDM or delivery of infant > 9 lb

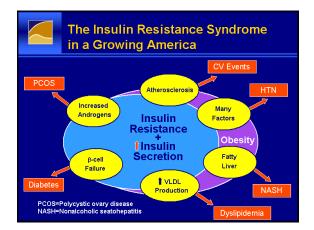
Risk Factors - Type 2 Diabetes (continued)

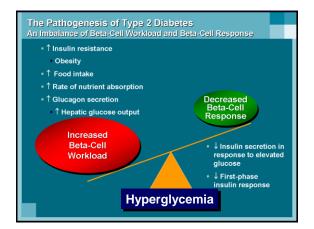
- Hypertension (≥ 140/90 mmHg in adults or on therapy for hypertension)
- HDL cholesterol < 35 mg/dl and/or triglycerides > 250 mg/dl
- Polycystic ovary syndrome
- History of vascular disease

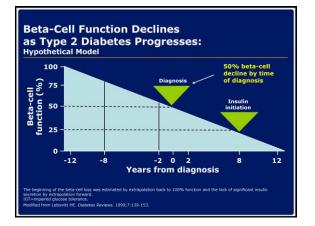
Insulin Resistance: Definitions

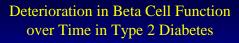

Insulin Sensitivity

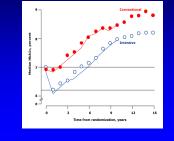
- Ability of insulin to lower circulating glucose concentrations


 stimulate glucose utilization: muscle plus fat
 - suppress glucose production: liver


Insulin Resistance


Condition of low insulin sensitivity

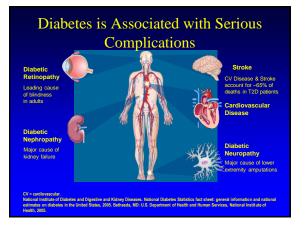


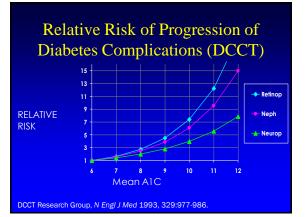

•1998 PPS

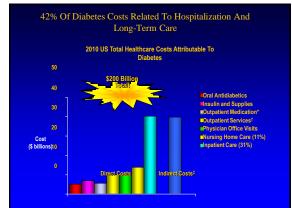
Type 2 Diabetes ... A Progressive Disease

Over time, most patients will need insulin to control glucose

Other Types of Diabetes Mellitus


- Genetic defects in beta-cell function (such as specific MODY types)
- Endocrinopathies
- Exocrine pancreas diseases (such as chronic pancreatitis)
- Drug or chemical induced
- Other rare forms


Acute Diabetic Complications


- Hyperglycemia
- Hypoglycemia
- Diabetic ketoacidosis
- Hyperosmotic hyperglycemic nonketotic state

Chronic Complications

- Microvascular
 - Retinopathy
 - Nephropathy
 - Neuropathy
 - Peripheral
 - Autonomic
 - Other
- Macrovascular
 - Coronary Artery Disease
 - Cerebrovascular Disease
 - Peripheral Vascular Disease

ADA a	nd AACE	ACE	Guide	elines:
Treatment	Goals for	A1C,	FPG,	and PPG
			-	_

Parameter	Normal ^{1,2} Level	ADA ³ Goal	AACE/ACE ² Goal
FPG, mg/dL	<100	90–130	<110
	4–6	<7ª	≤6.5

Patient Education in Diabetes

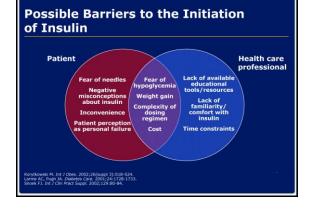
ADA National Standards for DSME*

Should include	May include
DSME team Patient, RN, RD, physician (endocrinologist where possible)	Psychologist, exercise physiologist, ophthalmologist, optometrist, pharmacist, podiatrist, and other health care providers
Written curriculum • Insulin administration • Nutritional management • Glucose monitoring	 Diabetes disease process Physical activity guidance Other monitoring (urine ketones, etc) Prevention, detection, and treatment of complications Goal setting and problem solving Preconception and prenatal care

	Energy Intake
Saturated fat	<10%
Protein	15%-20%
Carbohydrates and nonounsaturated fat	60%–70%
 Amount of monounsaturated fat varied according to metabolic needs and weight management goals 	
 Carbohydrates from whole grains, fruit, and vegetables 	
 Total amount of carbohydrate more important than source or type— sugar acceptable in moderation 	

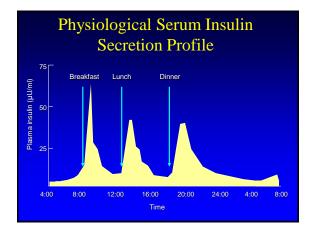
Nutrition Dlas

Treatment of Type 1 Diabetes


- Insulin replacement is essential
- Food intake, insulin, and exercise must be balanced carefully
- No accepted preventive measures (yet)

Treatment of Type 2 Diabetes

- Diet and exercise are the first interventions for prevention or treatment
- Oral medications
- Injectable medications other than insulin
- Insulin


Insulin Therapy in Type 2 Diabetes Indications

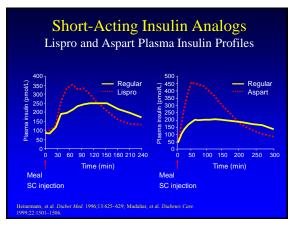
- Significant hyperglycemia at presentation
- Hyperglycemia on maximal doses of oral agents
- Decompensation
 - Acute injury, stress, infection, myocardial ischemia
 - Severe hyperglycemia with ketonemia and/or ketonuria
 - Uncontrolled weight loss
 - Use of diabetogenic medications (eg, corticosteroids)
- Surgery
- Pregnancy

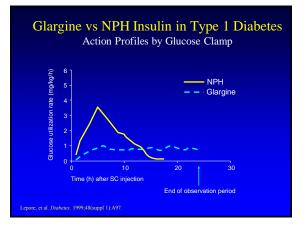
Insulin

- The most powerful tool for controlling blood glucose
- Used in type 1 and type 2 diabetes
- Use of insulin does not mean a patient has type 1 diabetes or that they will never get off insulin

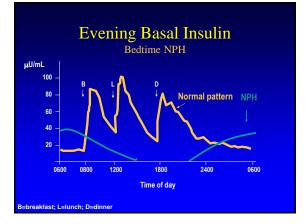
Different Types of Insulin

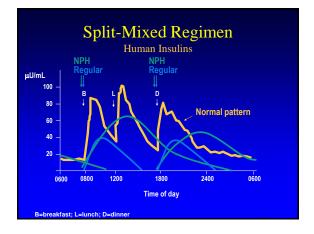
- Rapid Acting Analogs
 - Lispro
 - Aspart
 - Glulisine
- Short Acting
- Regular (R U100 or U500)
- Intermediate Acting

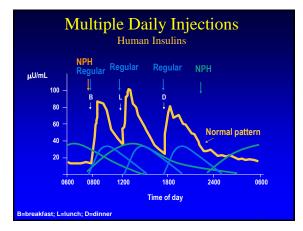

 NPH
- Long Acting Analogs
 - Glargine
 - Detemir

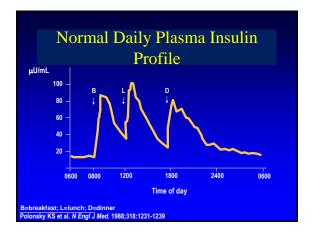

Different Types of Insulin

- Pre-Mixed Insulins
 - 70% NPH & 30% regular
 - 75% lispro protamine & 25% lispro
 - 50% NPH & 50% regular
- 50% lispro protamine & 50% lispro
- 70% aspart protamine & 30% aspart


Comparison of Human Insulins / Analogues


Insulin preparations	Onset of action	Peak	Duration of action
Regular	30–60 min	2–4 h	6–10 h
NPH	1–2 h	4–8 h	10–20 h
Lispro/aspa	rt 5–15 min	1–2 h	4–6 h
Glargine	1–2 h	Flat	~24 h





The Basal/Bolus Insulin Concept

- · Basal insulin
 - Suppresses glucose production between meals and overnight
 - 40% to 50% of daily needs
- Bolus insulin (mealtime)
 - Limits hyperglycemia after meals
 - Immediate rise and sharp peak at 1 hour
 - 10% to 20% of total daily insulin requirement at each meal

Starting Multidose Insulin

- Starting insulin dose is based on weight 0.2 x wgt. in lbs. or 0.45 x wgt. in kg
- Bolus dose (aspart/lispro) = 20% of starting dose at each meal
- Basal dose (glargine/NPH) = 40% of starting dose at bedtime

Key Parameters: Carbohydrate to Insulin Ratio

- Amount of carbohydrate metabolized by one unit of insulin
- Insulin given with meals is based on carbohydrates in the meal (pump can do calculation)
- Estimated at 500/TDD, often about 15:1 for type 1 diabetes patients

Carbohydrate to Insulin Ratio

	500 Rule	450 Rule	
Total Daily Insulin Dose	Grams of Carb per Unit of Rapid-acting Insulin	Grams of Carb per Unit of Regular Insulin	
20	25	23	
25	20	18	
30	17	15	
35	14	13	
Adapted from Pocket Pan	icreas, © 1994, Diab	etes Services, Inc.	

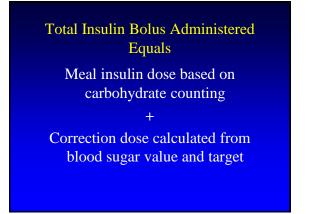
Alternative for Estimating the Carbohydrate to Insulin Ratio (CIR)

Individually determined

CIR = (2.8 x wgt in lbs) / TDD Anywhere from 5 to 25 g CHO is covered by 1 unit of insulin

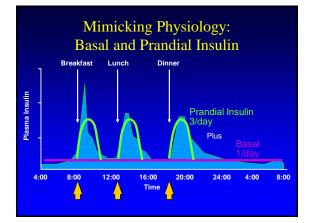
Using Carbohydrate Counting

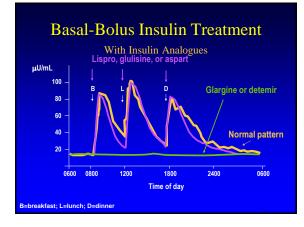
- To calculate insulin dose for a carbohydrate choice:
- Divide the total grams of carbs by carb-to-insulin ratio (for example, 15 grams per 1 unit).
- Example eight crackers:
- 1. Total carbs = 44 g.
- 2. 44 divided by 15 = 2.94 (round to 3.0).
- 3. Therefore, 8 crackers would require 3 units.


Key Parameters: Correction Factor

- Describes by how much blood sugar is lowered by one unit of insulin
- Used to calculate amount of insulin to reduce an elevated blood sugar to target
- Used to calculate amount of insulin to subtract from a meal dose to raise a low blood sugar to target

Insulin Correction Factor or Sensitivity


	Factor	
	1800 Rule	1500 Rule
Total Daily Insulin Dose	Point Drop per Unit of Rapid-acting Insulin	Point Drop per Unit of Regular Insulin
20	90 mg/dL	75 mg/dL
25	72 mg/dL	60 mg/dL
30	60 mg/dL	50 mg/dL
35	51 mg/dL	43 mg/dL


Adapted from Type 1 Diabetes - a Guide for Children, Adolescents, Young Adults and Their Caregivers; Ragnar Hanas MD, PhD; 2005, Marlowe & Company, NY.

Integrating Insulin Therapy With Lifestyle in Diabetes Mellitus

Thank you and Happy Nutrition Month

Any questions?